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LETTER TO THE EDITOR 

Computation of the critical exponents of percolation 
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t Istituto di Fisica G Marconi, Universita di Roma, INFN Frascati, Italy 
.t Istituto di Fisica G Marconi, Universiti di Roma, INFN Roma, Italy 

Received 17 October 1980 

Abstract. We compute the critical indices of percolation, using a method in which the 
integrals are computed at fixed dimension, at the order of two loops. Following this method 
we obtain the series, giving the critical exponents, expanded with respect to the coupling 
constant, while in the &-expansion method the expansion of the series is performed with 
respect to the coupling constant and to the number of dimensions D. So we think that we 
have obtained better control of the position of the fixed point also at a dimension not too 
near to six: we are also able to improve the numerical values of the exponents at D = 3. 

The aim of this Letter is to compute the critical indices of percolation using some 
techniques of field theory and a method due to Parisi (1980) (for a general review about 
the use of field theory methods in the field of critical phenomena see the papers by 
Wilson and Kogut (1974), BrCzin et a1 (1976) and the book by Amit (1978)). 

Following this last method, we have computed the integrals at fixed dimension, with 
a non-zero mass, at the order of two loops. 

In this way we have obtained better results, especially for D = 3: in fact, resumming 
the series in E, with E = 3, can lead to unprecise results. Moreover, we have obtained 
better control of the position of the fixed point also at a dimension not too close to six. 
Another advantage of this method is that the series, which give the critical exponents, 
are just expanded with respect to a single parameter, that is, the coupling constant. In 
the E -  expansion method, on the other hand, there are two parameters of the expansion: 
the coupling constant and the dimension D. The computation of the critical exponents, 
using the &-expansion method, has already been done by Amit (1976) and Priest and 
Lubensky (1976). 

It is known that percolation is the one-state limit of the Potts model (Fortuin and 
Kasteleyn 1969, 1972). 

Wallace and Zia (1975) have proved that the s -state Potts model, originally defined 
on the lattice, can be generalised to the continuum: in this limit, it generates an 
Euclidean field theory with n = s - 1 fields. Keeping only the terms which produce the 
strongest infrared divergences, the Lagrangian will contain only trilinear terms: this fact 
directly implies that the critical dimension is six. 

Following Parisi’s method we give the list of the definitions of the renormalised 
functions which appear in the Callan-Symanzyk equation and which we shall use later 
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to compute the critical indices: 

d d  
CT (U) = -m2--P2)(k2) 

dm2 dk2 k2=0 

d 
dm2 

c; (U) = m2-r(2,1)(o, 0)  

p =p*+$uCT(u)  

C 2 ( U )  = (1 -CT (U))C$ (U) C , ( U )  = (1 - CT (u))CT (U). 

In these formulae U is the dimensionless renormalised coupling constant, and the 
subscript R stands for renormalised. For detailed discussions of this definition of the 
renormalised coupling constant see BrCzin et a1 (1976). 

The critical exponents are defined by 

77 = 2Cl(U*) 

v-l=2+2C2(u")-77 

where U *  is the fixed point that is the zero of the function p (equation (1)). 

malised expansion in powers of the bare coupling constant. 
The functions in equation (1) can be computed using the conventional unrenor- 

At the two loops order the diagrams involved are shown in figure 1. 
The contributions of the diagrams of figure 1 are composed of a part which is the 

value of the integral representation of the diagram itself and a part which is the 
symmetry factor and the tensorial coefficient (due to the continuous symmetry of the 
Lagrangian which defines the field theory). 

The explicit form of these tensors, which are generated from the specific symmetry 
of the theory, is 

where 1: is the unit vector which points in the ith direction of a hypertetrahedron in 
n + 1 space, where n is the number of the components of the field and i = 1, . . . , n. 

The only diagrams which have a 'primitive' tensorial coupling are al ,  bl, b23 (these 
couplings will be called al, pl, p4, respectively) (Amit 1976, Priest and Lubensky 
1976). 

All the other tensorial couplings can be considered as a mixture of these two; the 
tensorial coefficients in al, b l  and b23 in the percolation limit are 

f f 1 = - l  p1= -2 p4 = 5.  

The combinatorial coefficient for each diagram is given in table 1. 
The particularity of the method we have used is that we can calculate the diagrams 

directly at fixed dimension after subtracting the counterterms which make them 
convergent at every dimension and after finding the derivatives of formulae (1). 
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Figure 1. Diagrams involved in the computation of the critical indices at the order of two 
loops. 

After the renormalisation procedure, the series of formulae (1) can be rewritten as 
1 3  2 p = m - " / 2  {-&U + :~~r(i~)r(i(8 -D))& -4p + ~~(:r(40))~r(7 - D ) ~ [ ~ ~  1 ~ 2 1  

-U (r(:D) r(;( 8 - D 

+iPia1(3A22 -Bzd -3P?B21 -pa231 

(ia - :p 1)} 

(4) 
a1 

24 c l ( u )  = - r(:~)r(:(8 -D))u + i(:r(:o))*r(7 - D ) ~  l~ ' ( a  1 ~ 2 1  + p 1~ 

a: 
(24) 

- 7(r(@)r(4(8 -D) ) )~u  

x (a azl + ~ P ~ B ~ ~  + 1 ~ 2 2  + P  1 ~ 2 3 )  -b4& (r(@)r(t@ -m2 
c,(u) =ial 4 r ( i ~ ) r ( 4 ( 8 - ~ ) ) ~ ~ + ~ ~ r ( 7 - ~ ) ( ~ r ( i ~ ) ) ~  ial 

where the contribution given by the integrals with one loop of figure 1 (after they have 
been derived with respect to m and k according to formulae (1))-a contribution that 
can be hand calculated-is directly expressed as the coefficient of the terms U and U '. 
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Table 1. List of the combinatorial coefficients of the diagrams of figure 1. 

The coefficients of u s  and u4 are the two loops diagrams of figure 1, derived with 
respect to m 2  and k 2 ;  the parameters are dimensionless: to evaluate Azi  and B2, we 
needed the help of a computer. The results are in table 2; the typical error is of unity 
in the last digit. 

Substituting the numbers of table 2 in formulae (4) we obtain an expression for p, 
C1, C2 at each dimension. 

In general, these series will be of the type 

p =m-"'2(-$Eu+Au3+Bu5) or C, = -A,,u + Bc,u 

with i = 1,2.  
In table 3 we report the values of A, B, Ac,, Bc,. After having found the fixed points 

(table 4) and having substituted them in (2, 3) we obtain the critical indices. The critical 
exponents 77 and v are given in tables 4 and 5 .  

The exponents of table 4 are obtained by resumming the series with the Pade-Bore1 
method (Baker et a1 1978), while those in table 5 are obtained using the pseudo E 

expansion (Le Guillou and Zinn-Justin 1980). 
Finally, in table 6, we write the exponents p,  y obtained from 77 and v by using 

scaling relations. 
Our results fit fairly well with those of Kirkpatrick (1976) (table 6); as we mentioned 

at the beginning of this Letter we have obtained more accurate results for D = 3 in place 
of the &-expansion method, especially for p. 

Table 2. Numerical values of the coefficients and B2i which appear in equation (4). 

D A21 A 2 2  B21 B22 B 2 3  

6 -0.0373 0.110 0.248 -0.417 0.5 
5 -0.0132 0.061 0.145 -0.160 0.2331 
4 -0.465 x lo-' 0.034 0.083 -0.063 0.1147 
3 -0.146 x 0.019 0.047 -0.024 0.0582 
2 -0.316x lo-' 0.010 0.027 -0.008 0.0301 

Table 3. Coefficients at various dimensions of the series p,  C1, C2. 

D A B AC 1 Bc2 A C 2  Bc2 

5 2.062 2.182 0.0491 0.0218 0.2945 0.2312 
4 0.875 0.617 0.0417 0.0141 0.025 0.1432 
3 0.687 0.579 0.0491 0.0191 0.2945 0.1865 
2 0.875 1.219 0.0833 0.0551 0.5 0.5258 
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Table 4. Zeros of the function P,  and 7 and v exponents, obtained by the Pad&-Bore1 
method. 

D U *  7 v 

5 1.31 -0.062 0.57 
4 1.65 -0.14 0.68 
3 2.20 -0.23 0.84 
2 3.51 -0.35 1.10 

Table 5. 7 and v exponents obtained by the pseudo E expansion. 

5 -0.062 0.57 
4 -0.14 0.69 
3 -0.24 0.89 
2 -0.35 1.31 

Table 6. p and y exponents obtained by scaling relations and compared with Kirkpatrick’s 
(1976) values. 

D P Y P Y 

5 0.8 1.2 0.66*0.05 1.3 * O . l  
4 0.6 1.5 0.52 i: 0.03 1.6*0.l 
3 0.3 1.9 0.39 i: 0.02 1.8i0.05 
2 -0.2 2.6 0.2 2.3 

The method based on the renormalisation group analysis does not succeed in 
determining the /3 index for D = 2: in fact, in this case, our result is in complete 
disagreement with Kirkpatrick’s. 

At  the present time we are studying this. We think that this is because at D = 2 the 
fixed point becomes unstable (Amit et al 1977, Houghton et al 1978). 

We should like to thank Professor G Parisi for having suggested the problem and for his 
constant help. We also thank Dr  L Peliti for many helpful conversations. 
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